Is the gas-particle partitioning in alpha-pinene secondary organic aerosol reversible?

نویسندگان

  • Andrew P. Grieshop
  • Neil M. Donahue
  • Allen L. Robinson
چکیده

[1] This paper discusses the reversibility of gas-particle partitioning in secondary organic aerosol (SOA) formed from a-pinene ozonolysis in a smog chamber. Previously, phase partitioning has been studied quantitatively via SOA production experiments and qualitatively by perturbing temperature and observing particle evaporation. In this work, two methods were used to isothermally dilute the SOA: an external dilution sampler and an in-chamber technique. Dilution caused some evaporation of SOA, but repartitioning took place on a time scale of tens of minutes to hours–consistent with an uptake coefficient on the order of 0.001–0.01. However, given sufficient time, a-pinene SOA repartitions reversibly based on comparisons with data from conventional SOA yield experiments. Further, aerosol mass spectrometer (AMS) data indicate that the composition of SOA varies with partitioning. These results suggest that oligomerization observed in high-concentration laboratory experiments may be a reversible process and underscore the complexity of the kinetics of formation and evaporation of SOA. Citation: Grieshop, A. P., N. M. Donahue, and A. L. Robinson (2007), Is the gas-particle partitioning in alpha-pinene secondary organic aerosol reversible?, Geophys. Res. Lett., 34, L14810, doi:10.1029/2007GL029987.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling the gas-particle partitioning of secondary organic aerosol: the importance of liquid-liquid phase separation

The partitioning of semivolatile organic compounds between the gas phase and aerosol particles is an important source of secondary organic aerosol (SOA). Gasparticle partitioning of organic and inorganic species is influenced by the physical state and water content of aerosols, and therefore ambient relative humidity (RH), as well as temperature and organic loading levels. We introduce a novel ...

متن کامل

Organic nitrate and secondary organic aerosol yield from NO3 oxidation of β-pinene evaluated using a gas-phase kinetics/aerosol partitioning model

The yields of organic nitrates and of secondary organic aerosol (SOA) particle formation were measured for the reaction NO3+β-pinene under dry and humid conditions in the atmosphere simulation chamber SAPHIR at Research Center Jülich. These experiments were conducted at low concentrations of NO3 (NO3+N2O5<10 ppb) and βpinene (peak∼15 ppb), with no seed aerosol. SOA formation was observed to be ...

متن کامل

Ozonolysis of a-pinene at atmospherically relevant concentrations: Temperature dependence of aerosol mass fractions (yields)

[1] Despite a number of smog chamber studies of the a-pinene/O3 system, the effect of temperature on a-pinene secondary organic aerosol (SOA) mass fractions (or yields) remains poorly understood. In this study, the temperature dependence of secondary organic aerosol mass fractions (AMF) during ozonolysis of a-pinene is investigated in a temperature controlled smog chamber. Experiments were perf...

متن کامل

Equilibration timescale of atmospheric secondary organic aerosol partitioning

[1] Secondary organic aerosol (SOA) formed from partitioning of oxidation products of anthropogenic and biogenic volatile organic compounds (VOCs) accounts for a substantial portion of atmospheric particulate matter. In describing SOA formation, it is generally assumed that VOC oxidation products rapidly adopt gas-aerosol equilibrium. Here we estimate the equilibration timescale, teq, of SOA ga...

متن کامل

Nonequilibrium atmospheric secondary organic aerosol formation and growth.

Airborne particles play critical roles in air quality, health effects, visibility, and climate. Secondary organic aerosols (SOA) formed from oxidation of organic gases such as α-pinene account for a significant portion of total airborne particle mass. Current atmospheric models typically incorporate the assumption that SOA mass is a liquid into which semivolatile organic compounds undergo insta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007